
ratio of phases; cr I, abscissa of the poh-zt of inflection of the Buckley function; V, gas volume injected into the 
bed; T, duration of pumping; T0i, duration of i-th gas withdrawal; t, time; x, spatial variable; ~", dimension- 
less time; ~, dimensionless spatial coordinate. 
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TWO TYPES OF HE AT 

THERMAL MEMORY 

I. A. Novikov 

TRANSFER IN MEDIA W I T H  

UDC 536.24 

I t  i s  shown that  media  with t h e r m a l  m e m o r y  can be grouped into two c l a s se s ,  based  on d i f f e r -  
er~t types  of heat  t r a n s f e r .  In med ia  of the f i r s t  c l a s s ,  the heat  propagat ion  veloci ty  is  infinite, 
while in the second c l a s s ,  i t  is  f inite.  This di f ference is  r espons ib le  fo r  the pecu l i a r i t i e s  of 
the soh~tions of the heat -conduct ion  p r o b l e m  in the two c l a s se s .  

Cur ren t ly  in the study of h e a t -  and mass -~ t rans fe r  p r o c e s s e s  under ex t r eme  conditions (low o r  ve ry  high 
t e m p e r a t u r e s ) ,  the m~them~t ica l  fo rmula t ion  of heat  conduction and m a s s  exchange is  used including d i f fe r -  
ential  m e m o r y  of the m ed i um  [1-4, 7-9]. A l i n e r a r i z e d  heat -conduct ion equation of th is  kind was f i r s t  ob-  
ta ined  in [8]; i t  d e s c r i b e s  heat  t r a n s f e r  with a finite heat  p ropaga t ion  veloci ty  [8, 9]. In the der ivat ion of a 
s i m i l a r  hea t -conduct ion  equation in [2], a diiferer~t, m o r e  genera l  f o r m  of the l inear ized  in tegra l  h e a t - t r a n s -  
f e r  re la t ion  was  used,  which includes the ins tantaneous values  X (0) and c(0) of the re laxa t ion  functions for  the 
heat  flux and the in terna l  energy.  Then med ia  with t r ans i en t  t h e r m a l  m e m o r y  can na tura l ly  be divided into 
two c l a s se s :  those  with the ins tantaneous  value k (0) > 0 (Four i e r  media) and those  with k (0) = 0 (MaxweIlian 
media) .  It  was  also shown in [2] that  the Nunzia toheat -conduct ion equst ionwith  ~ (0) = 0 can be reduced  to the 
P i p k i n - C u r t i n  equation [8] and hence in th is  type of medium,  heat  p ropaga tes  with a finite velocfty.  I t  is  
shown below that  in a F o u r i e r  med ium,  heat  i s  t r a n s f e r r e d  with an infinite velocity. Using the method of so lv-  
ing the he , t - conduc t ion  p r o b l e m  fo r  the Nunziato equation worked out in [4], we desc r ibe  the heat -conduct ion 
behav io r  fo r  smal l  va lues  of the t ime in both types  of  media .  The r e s u l t s  a r e  applied to the dis t r ibut ion func-  
t ion of an ins tat~taneous point sou rce  and this  a l lows one to deduce the type of heat  propagat ion  and aiso the 
qual i ta t ive f e a tu r e s  of the solution for  each  type of medium.  

We cons ider  the in tegrodif ferent ia l  heat -conduct ion equation fo r  the function u(t, M) = T(t, M) - T(0, M) 
desc r ib ing  the l inea r i zed  t r a n s f e r  p r o c e s s  with t r ans i en t  t h e r m a l  m e m o r y  as  fo rmula ted  by Nunziato [2]: 

o i (0) Ou ~(O) Au-~- ~ [  ~ dc~l-('c)~ cDtt (t ~-T, M) d~l (~) h u ( t - -~ ,  /vi)] d~ b(t, N ) ,  (1) 
ao Ot J[ a o cl'~ Ot d'~ j ~o 

0 

S c i e n t i f i c - R e s e a r c h  Inst i tute  of the Rubber  Indus t ry ,  Leningrad  Branch.  Trans la t ed  f r o m  Inzhenerno-  
F iz ichesk i i  Zhurna l ,  Vol. 44, No. 4, pp. 664-672, Apr i l ,  1983. Original  a r t ic le  submit ted  D e c e m b e r  14, 1981. 
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where  u(0, M) = 0, k 0 = X (co); P0% = c(,o). In t r a n s f o r m  space this  equation has the fo rm 

AU(p, M ) - -  ~(p) U(p, M ) - -  B(p, M) ;~(p)=pC~(p)/Aa(p). (2) 
ao )~opAi (P) 

Where  as  usual, capital l e t t e r s  denote a Laplace t r a n s f o r m  of the corresponding function. F r o m  the defini-  
t ions of )'0, P0, and c 0, the re laxat ion kerne l s  kt(t)  and cl(t) approach unity for  large  t imes.  According to a 
t heo re m on l imi ts  [5], the Laplace t r a n s f o r m s  have the following behavior  as p--*- 0: A l ( p ) ~  p- l ;  Cl(P ) ~ p-1 
~0 (p) ~ p ,  and (2) fo r  the t r a n s f o r m  function U(P, M) takes  the usual f o rm  corresponding to F o u r i e r  heat t r a n s -  
fe r .  Thus,  the solutions for  the differer~t heat-conduct ion equations (the usual F o u r i e r  equation and the equa- 
t ion with t rans ien t  memory)  should asymptot ica l ly  approach each  o ther  as  the t ime i n c r ea se s ,  and converge 
to some s ta t ionary  state. F r o m  (1) and (2) it  can be seen that if the t ime dependence of the heat flux matches  
that of the internal  energy ,  i .e . ,  Xl(t) = el(t) and el(0) > 0, then the heat-conduct ion equation r emains  parabol ic  
but with a change in the heat source.  According to the formulat ion in [4], the t r a n s f o r m  heat-conduct ion p rob -  
l em without boundary conditions fo r  the homogeneous f o r m s  of (1) is  obtained by replacing p by q~(p) in the 
t r a n s f o r m  solution UI(P, M) for  the o rd ina ry  heat-conduct ion equation. The solution u(t, M) is  obtained using 
the following resu l t  der ived  in [4]: 

u (t, M) = i a (t, -c) ul (a', M) d'q a (t, ~) = L -i exp [-- (p (p) ~], (3) 
0 

where  ul(t, M) = L-iUt(p,  M). The resu l t  (3) is c o r r e c t  when the function ~0(p) sa t isf ies  the condition Re[~0(p)] 
> (r fo r  Re(p) > or, wb]ch is  called the condition of " t ransformabi l i ty"  in [4]. Note tb_~t this  condition is sa t i s -  
f ied if the function ~0(p) approaches  fl0pa as p ~  co, where/30 > 0 and -1  -< 0~-<1. 

F o r  small  t imes ,  when the solution of the heat-conduct ion equation with m e m o r y  dif fers  most  f r om that  
of o rd ina ry  heat conduction, it i s  useful to expand the re laxat ion kernels  in powers  of t: 

~,a L {k) dh~a (0) 
~,~ (t) = ~ (0) + ~ th; ~,(~) = dt k ," s (0) ~ O; 

k = l  (4) 

c k) dhcl(O) 
ci (t) = c a (0) + -k~. th; c(~') ---- dt h ," ci (0) > O. 

k ~ l  

At la rge  p (corresponding to small  'times) the Laplace t r a n s f o r m s  A 1 (p) and Ci(P) of these  kerne ls  have the 

fo rm  

2 ~(h, c~(O) ~ c (~' A~ (p) = ~ (0) _[_ pk+~ ; C1 (p) = - -  -[- P"+~. (4a) 
P h=i  P =I 

Depending on the small  t ime  behavior  of the re laxat ion kerne l s  kl(t) and ct(t), the expansion of q)(p) can be 
divided na tura l ly  into two types ,  and the behavior  of the solution of the heat-conduct ion prob lem with m e m o r y  
c r i t i ca l ly  depends on the type of ~0(p) expansion. 

Relaxation Kernel  of the F i r s t  Class  kl(0) > 0. In this  case the expansion of the function ~0(p) fo r  la rge  
p in decreas ing  powers  of p begins with a l inear  t e r m  and sat isf ies  the t r ans fo rmabi l i ty  condition 

~ d  -m (p (p) = dip @ do + -rap ;d  l > O ;  
m = l  

d~ = c~ (O)/h (0); do = d~ c~ (O)  - -  h ( O )  ' 

[ c(2) ~,2) J 1 , d o  L(,) 
d_~ = d~ [c~(O) Xi(O) ~,i(O) ; . . . .  

In the analysis  of the solution u(t, M) of the heat-conduct ion equation (1) fo r  small  t imes ,  one can keep the f i r s t  
two t e r m s  in expansion (5), i .e . ,  put ~0(p) = diP + do. Then (3) for  u(t, M) leads as usual to a change in the t ime 
scale  and to the appearance of an exponential  fac tor  when compared  to the solution for  the o rd inary  hea t -conduc-  

t ion equat ion 

u(t,  M ) = L - t U i ( d l p + d o ,  M ) =  ~ u i  ~ , M exp - -  d~ ] " 
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The small time behavior of 'the soh~tion can be made more exact by including higher-order terms in expansion 

(5) for ~0(p). For example, if we keep the Lhird-order term in (5) and use the results of [4] and the properties 
of the Laplace transform [5, 6], we find 

f 

u (t, M) = L-1U1 (dip -{- d o -k d ,p- ' ,  M) = u [ ']  (t, M) -- sgn (d_l) [ u [~ (% M) ~ / ' / ~  o ( - L~ [2 V ]d_,l ~ (t - -  , ) ]  d, .  (6a) 

where 

f:, d-1 ~" O; fYl, d ,  ~ O; 

( - -  1, d _ l ~ O ;  

a n d  u[*](t ,  M) d e n o t e s  t h e  s o l u t i o n  u( t ,  M) o b t a i n e d  in  (6). 

We a p p l y  (3) 'to ' the d i s t r i b u t i o n  f u n c t i o n  f o r  an  i n s t a n t a n e o u s  p o i n t  s o u r c e  p l a c e d  a t  p o i n t  M 0 of  a n  n -  
dimensional space at t = O. Since [7] 

exp (-- r2/4ao t) -----+ 

then 

i a (t, ( f ( t ,  , - ) =  .., 
r, ) 

d~; n =  1, 2, 3, 
4 a o z  

where r is the distance between points M and M 0. With the help of (6) and (6a), the small time behavior of the 
distribution function f(t, r) of an instantaneous point source can be worked out to first and second order 

I ) fi l l( t ,  r ) =  1 Vd 1 exp -- do t r2dl " (7) 
2 Kaao--t- d~ 4act ' 

f (t, 0 = fE J (t, O -  (d_O t V "  Id-,I o ( t - -  ~) L~ [2 V Id-,I ~: (t - -  x)] d'~. (7a) 

The first-order equation (7) shows that for relaxation kernels of the first class, heat propagates with an infi- 
nite velocity, as in the case of Fourier's law. If one includes 'the third-order term in the expansion of g0(p) 
(see (7a)), the sohxtion becomes quantitatively more accurate, but the qualitative nature of the heat propaga- 
tion is not changed. It is obvious 'that the higher-order terms of expansion (5) do not change the nature of the 
heat propagation. At large times the distribution function for the instantaneous point source approaches its 
classical form. We will refer to a medium with a rda~xation kernel of the first kind as a Fourier medium. 
The solution of the heat-conduction problem for a medium with thermal memory of the Fourier type has the 

same qualitative features as in ordinary heat conduction. This can be seen, for example, in the expressions 
for the velocity w(c0) = Wcl(C0)/4~[ I and the damping coefficient 4(o0) = ~cl(C0)4-di in the limit o0-~ ~o obtained in 
'the temperature wave problem in [2]. This also explains the in.finite initial heat flux at the boundary (x = 0) 
for a unit step temperature input ~t the boundary of a semiinlinite medium, as will now be shown. The trans- 
form solution of this problem has the form 

U(p, x)=--pl ex p [ VraoX-- ] / ~ - - ~ ] ,  x~O.  

Using the 'two-'term approximation to (5) for go(p) as a function of p, and using the table of transforms in [6] 
and also Eq. (6), we obtain 'the solution at small times 

= - - f  ~ x erfc j- -~ exp - -  x erfc 

Differentiating (8) and using (4) and the relation for the heat flux in [2], we obtain the flux at the boundary q0(t): 

t 

qo (t) = ~ (0) q~ (0 + ~ q~ (t - -  , )  [~(~) § ~(~-% § o (~)] d~:, 
0 
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f r om which we see that q0(t) ~ ~ as  t--* 0, as  expected 

[ / ~  + (1) = ~.1 (o) (qo)ol + o (1). ~oPoOodl 
qo (t) -+ h (o) ~t 0 V~ 

Here  (q0)cl is the c lass ica l  value of the heat f lax at 'the boundary for  the same prob lem [7]. One can ref ine 
the solution u(t, x )w i th  the help of (6a). 

Relaxation Kernel  of the Second Class. hi(0 ) = 0, X (i) > 0. The expansion of go(p) for  large p ( c o r r e s -  
ponding to small  t imes)  s t a r t s  with p2: 

,~ (p) = 6 p  ~ + d~p + do + ~ -k d_hp , d 2~>0; 
h=i 

Cl(O) [ C (t) ~(2) 1 d~ ~(i) ; d l = d ~  - - - -  
" C 1 (0) ~(1) ; 

(9) 

I C{2) 
~(~) --dl-j~) ; .... 

Unlike (5), expansion (9) does not satisfy the transformabiltty condition. Therefore, (3) cannot be used direc- 
tly for the solution of the heat-conduction problem (i) wfth or without memory. However, if we use the fact 
that 'the solution of 'the heat-conduction equation (i) in transform space does not cor~tain g0(p) itself, but rather 
go0(P)--- ~-~, i.e., U(p, M)= Ui[go(p), M] = U2[go0(p), M], where go0(p)satisfies the transformability condition, 

then (3) can be applied to 'the transform U2[go0(p), M]. 

With the help of the above discussion, we analyze the behavior of 'the solution u(t, M) at small times. 
Keepingterms up to third order in the expansion (9) and using (3), we transform to 'the solution u(t, M) using 
the tables in [5, 6] and straightforward algebraic manipulation: 

2d2 ] / - i ~  d~,~z ' 

d, V P  l 4dod: 
b ~ -2d~ a~ 

(lo) 

T h e r e f o r e  

u2 M 
i ( d e ' b T T I l ( b l / t 2 - - T  z) dx,(ll ) 

u(t, M ) =  a(t, T) u 2(T, M) d T : e x p  - -  2d~ t ]/d'~2 " + ~  u~ , M J / t  z - ~  

where  u2(~, M) = L-1UI(P 2, IV[) and UI(p, M) is the t r a n s f o r m  solution of the same prob lem for  the o rd ina ry  
heat-conduct ion equation. F o r  a Maxwell medium the re la t ion between t h e  solutions u(t, M) and ut(t, M) for  
the same heat-conduct ion prob lem is more  complicated than for  a the rma l  medium of the F o u r i e r  type. 

The t r a n s f o r m  F2(P, r) of the distr ibution function fl(t,  r) for  an instar~taneous point source  is  wri t ten 

in the fo r m  

[ e x p ( - - l x - - x o i p / V ' ~ o )  , n = l ;  
[ 2 V ~ o p  

F~ (p, r) = F, (pZ, r) = { 
I exp (-- rp/V'~o )" , n = 3 ; 

4aao r 

Applying (3) to this  express ion  we find f(t, r) fo r  the insta~tarmous point source:  

460 



,x_x0,) I t , l z =  1; 
2 V g  , Vg 

L (t, 0 = L - , &  (p, r) = 
. - -  ( I* ) I 1 (3 t .. 

[ 4aao r V~ao , n = 3 ;  

Ix-x. i 
f (t, r)= i v~7 

r ,  (7 o) a t, , r t = 3 .  
I 4aaor 

For small times, the approximation formulas (i0), (Ii) give 'the distribution function of the instantaneous 
poir~t source  fo r  n = 1: 

t 

2 V'~0dz exp ----2d~ t E (, ~ 1~o , + b S (, ~ "~ [xI~ao-- x(,i Tlll/~(b VS~-~_ "c a T z) d"c -- 
0 

~--- ~ -  o w' 2 , 7~ ) exp (--  dlTt); 

~r V I 2d o �9 b = dl '  Y 1 - - ~  , 
Y= 2a0 '  7d~ 

(i2) 

where w = ~a.0/d 2 is the propagation velocity of the thermal wave frollt. For n = 3 the function f(t, r), after 

simple transformations, takes the form 

f(L r) = exp (--  d,yt) [ - - 1 - - - - -  5 (t - -  @ )  @ _ _ E  ( t _ @ )  \ F w' / = ? . ] .  (13) 
4~a~ 4aa~ ~ tz ~-2 

In 'the spec ia l  case  (d i = 1, d o = 0) these  e x p r e s s i o n s  reduce  to the fundamental  solution for  the hyperboI ic  
heat -conduct ion  equation. Resu l t s  (12) and (13) show that  in one dimension and three  d imens ions ,  he~t p r o p a -  
ga tes  with a finite veloci ty ,  fo r  re laxa t ion  ke rne t s  of the second c la s s ,  as  in the case  of 'the Maxwell law. It 
i s  evident 'that inclusion of the h i g h e r - o r d e r  t e r m s  in (9) will not change the quali tat ive nature  of the heat p r o -  
pagation.  We will r e f e r  to a med ium with a re laxa t ion  kernel  of the second c l a s s ,  and a Maxwellian medium.  
The finite heo;t-propag~tion veIoci ty  is  consister~t with 'the damping eoeffieier~t ~ (c0)~ dlT and propagat ion  velo-  
ci ty w(c0)~ w = ~ in the l imi t  co ~ ~ obtained in 'the t e m p e r a t u r e  wave p rob l em of [2]. In heat-conduct ion 
p r o b l e m s  in med ia  with m e m o r y  of the Maxwell ian type,  o ther  quali tat ive f ea tu res  of the solution can also be 
predic ted:  'the p r e s e n c e  of a sha rp ly  defined leading edge to the t h e r m a l  wave with a constant t ransI~t ional  
veloci ty  and a spreading  diffusive wake behind it, the propagat ion  of damped t he rma l  shock waves ,  a l imi t  to 
the m a x i m u m  heat  flux at the boundary for  a unit t e m p e r a t u r e  step input the re ,  ere; and these ef fec ts  being 
consequences  of the finite heat  p ropaga t ion  velocity.  In genera l ,  the heat-conduct ion p r o b t e m  for  a Maxwellian 
med ium s h a r e s  the qual i ta t ive f e a t u r e s  of the solution for  the same  p rob l em with the hyperbol ic  h e , t - c o n d u c -  
t ion equation. 

We d i scuss  the behav ior  of the function f(t, r) at smal I  t imes .  Equations (12) and (13) a r e  wri t ten  under  
the a s sumpt ion  that  d~ > 4d2d 0 (or b > 0). T h e r e f o r e  at f ixed t ,  the one-d imens iona l  ins tantaneous point source  
(12) l eaves  an aper iodic  spat ia l  wake that  is  constant  in sign. The m a x i m u m  value fmax  occu r s  at x = 0 (fmax = 
(y/w)I0(bt) exp (-diyt)  and it d e c r e a s e s  monotonical ly  with i n c r e a s i n g x t o  the value fmin ffmin = (y/w) exp (-dlyt) ,  at 
the wave fror~t. If  d~ = 4d2d 0 (or b = 0), 'the one-d imens iona l  instar~taneous point source  l eaves  a spat ia l  wake 
of the form 

/(t, x-x0)= s(t= IX= oI  o= 0. (12a) 
When d~ < 4d2d0, then b is  i m a g i n a r y  (b = ib 0, where  b 0 = 7~/4d2d0-d'~ > 0). This  leads  to the Besse l  function 

J0 in (12): 
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[(t,Z--Xo)=%- o boV t2 
- ( I x - -  x0l " Ix - -  xo? exp (--  dlTt ) E ~ t - -  } �9 

~z2 w / (12b) 

F r o m  this  we see that  for  fixed t ,  the function f(t, x - x  0) osc i l l a t e s  in space and is  damped with the amount 
of damping inc reas ing  with dec reas ing  x. The m a x i m u m  value o c c u r s  on the wave front  fmax = (y/w) exp (-d~yt). 
These  t h r ee  types  of spat ia l  f o r m s  also occur  in the t h r ee -d imens iona l  case  fo r  the diffusive p a r t  of the ins -  
tan taneous  point source  ( see  (13)): 

/ r z ) 

1 5 t - -  E t.-- - �9 d~<4d2do. (13b) f(t, r) = exp (--  dlTt) " 4nao r ~ 4zraow w ] ] /  r 2  ' 

V ~2 

We study 'the s m a U - t i m e  behavior  of the heat -conduct ion boundary-va lue  p rob l em with a unit step t e m -  
p e r a t u r e  input at 'the boundary of a semiinf ini te  medium.  The t r u n s f o r m  solution of this  p rob l em for  the hea t -  
conduction equation (1) is given by 

i U(p, x ) = l p  exp - -  ]/~-o % (p) ; ~ 0 ( P ) = l / d 2 p  2-t-dip + do. (14) 

Where  we have used 'the ' t h r e e - t e r m  approx imat ion  fo r  ~o(p) in the expansion (9). Using (10) and 'the p r o p e r -  
t i e s  of 'the i nve r se  LapIace  ' t r ans fo rm,  the solution u(t, x) for  smal l  t i m e s  is  obtained as  

u(t, x ) - - E  t - -  x exp - -  + - -  x 2 
~2 ~ FJ ~ / , g 2  

The r e su l t  (15) shows tb.~t a damped  ' thermal  shock wave p ropaga te s ,  and the ' t empera tu re  jump u 0 at the wave 
f ront  is  given by u0 = e x p ( - d t y x / w ) .  This  express ion  for  the t e m p e r a t u r e  jump dif fers  f r o m  that  of [10] fo r  
the hyperbol ic  heat -conduct ion  equation, only by 'the f ac to r  d 1 in the exponent. Solving this  equation for  x, we 
obtain f o r m u l a s  for  the pene t ra t ion  depth and pene t ra t ion  t ime  fo r  t h e r m a l  waves  in the med ium as  a function 
of the value of the t e m p e r a t u r e  jump at the wave front:  

d ~  d2 [lnu0]; uo N 10 -~ - -  10 -~. x~<2 w Ilnu01; t ~< 2 - ~ -  1 

These  quar~tities can be used  to define approx ima te ly  the region of nonparabol ic i ty  of the p rob lem.  Di f fe ren-  
t iat ing (15) and using the re la t ion  fo r  the heat flux given in [2], we find a s imple  expres s ion  for  q0(t) at smal l  

t ime  s: 

qo(t)=- ~.OWao c1(0) 1+ \ - - ~ - + d 1 7  t + d , 7 - - ~ - +  2 ~(" -[ 2 2 ) t2+~ " (16) 

F r o m  th is  r e su l t  we see t l~ t  'the flux at 'the boundary is  finite at t = 0; %(0) = cl(0)k 0w/a0 and dif fers  f r o m  'the 
value in [7] fo r  the hyperbol ic  heat -conduct ion  equation only by the f ac to r  c l(0). Hence,  the quali tat ive l e a -  
l u r e s  of heat  conduction in a Maxwel l ian- type  med ium at smal l  t i m e s  a r e  'the s ame  as  those  for  the hyperbol ic  
heat -conduct ion  equation; the expansion p a r a m e t e r s  of (9) for  the re laxa t ion  kernel  show up in the quanti tat ive 
re la t ions .  F r o m  the exp re s s ion  fo r  the t e m p e r a t u r e  jump u 0, we see tb_~t the at tenuation of propagat ing  waves  
can be g r e a t e r  o r  l e s s e r  than in 'the hyperbol ic  case ,  depending on 'the f o r m  of the re laxat ion  kerne ls .  The 
hea t -conduct ion  p r o b l e m  in a semiinfirdte  m ed ium with an a r b i t r a r y  ' t empera tu re  dis tr ibut ion on the boundary 
was  solved in [9] using the P i p k i n - C u r t i n  equation and a m o r e  approx imate  method using combined F o u r i e r  

and Lap lace  t r a n s f o r m s .  

Final ly ,  we note tb_,ut r ecen t  s tudies of m a s s - t r a n s f e r  p r o c e s s e s  have also used  l inea r  in tegrod i f fe ren-  
t iai  equations of type (1) but with a single re laxa t ion  function [3], s ince t he r e  is  not as  yet enough e x p e r i m e n -  
ta l  jus t i f icat ion for  the introduction of a re laxa t ion  function for  the in ternal  energy.  The r e su l t s  given above 
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also apply for diffusion processes, and one can, in similar fashion, define a Fick's type medium with an in- 
finite mass propagation velocity and a Maxwellian medium with a finite mass propagation velocity. The re- 
salts obtained here are valid for mass-transfer processes in these materials. 

NOTATION 

k 0, equi l ibr ium the rma l  conductivity; P0, mass  densi ty,  Co, equi l ibr ium heat capaci ty of the mater ia l ;  
k~t), c(t), re laxat ion kerne ls  for  the heat flux and internal  energy;  a 0 = k0/P0C0, the rma l  diffusivity,  T, t em-  
pe ra tu re ;  L,  L - i ,  Laplace t r a n s f o r m  and inverse  Laplace t r a n s f o r m  opera to r s ;  p, Laplace t r a n s f o r m  var i -  
able; ki(t) = k(t)/k0, ci(t) = c(t)/c0P0, d imensionless  re laxat ion kerne ls  for  the heat flux and internal  energy;  
M, spatial  poir~t; J1, I1, f i r s t - o r d e r  Besse l  functions of the f i r s t  kind for  rea l  and imaginary  argument;  J0, I0, 
z e r o t h - o r d e r  Besse l  functions of the f i r s t  kind for  rea l  and imaginary  argumer~t; w, heat propagat ion veloci ty;  
i ,  imaginary  treat; Re,  rea l  pa r t  of a complex number  o r  function; or, index of inc rease  of the function ul; 6 (t), 
the Di rac  delta function; E (t), Heaviside unit step function. 
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T E M P E R A T U R E  D I S T R I B U T I O N  IN P L A T E S  AND I N F I N I T E  

P R I S M A T I C  B O D I E S  O F  C O M P L E X  C R O S S  S E C T I O N  F O R  A 

T I M E - V A R Y I N G  H E A T - T R A N S F E R  C O E F F I C I E N T  

A.  P .  S l e s a r e n k o  a n d  N.  F .  S h e m e t o v  UDC 536.21 

We presen t  a new method for  solving heat-conduct ion prob lems  with a t ime-va ry ing  h e a t - t r a n s -  
f e r  coefficient in domains of complex shape, and cite numer ica l  r e s e t s  for  two prob lems .  

Because  of mathemat ical  diff icult ies,  heat-conduct ion p rob lems  with a t ime-dependent  h ea t - t r an s f e r  
coefficier~t cannot be solved analyt ical ly in complex domains for  a given Bi(Fo),  even for  one-dimensional  
cases  [1]. 

We consider  the case when the calculat ion of the t em p e ra tu r e  distr ibution in plates  and infinite p r i s m a -  
t ic  bodies of complex c ros s  section reduces  to the solution of the heat-conduct ion p rob lem 
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